Mean value theorem

$\textbf{Mean value theorem}$ Let $a<b$ be real numbers and $f:[a,b]\to \R$ a continuous function on the closed interval $[a,b]$ and differentiable on the open interval $(a,b)$. Then there exists some $c$ in $(a,b)$ such that $$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}.$$
$\textbf{Mean value theorem}$ Let $a<b$ be real numbers and $f:[a,b]\to \R$ a continuous function on the closed interval $[a,b]$ and differentiable on the open interval $(a,b)$. Then there exists some $c$ in $(a,b)$ such that $$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}.$$
copied
๐Œ๐ž๐š๐งย ๐ฏ๐š๐ฅ๐ฎ๐žย ๐ญ๐ก๐ž๐จ๐ซ๐ž๐ฆ Let ๐‘Ž<๐‘ be real numbers and ๐‘“:[๐‘Ž,๐‘]โ†’โ„ a continuous function on the closed interval [๐‘Ž,๐‘] and differentiable on the open interval (๐‘Ž,๐‘). Then there exists some ๐‘ in (๐‘Ž,๐‘) such that ๐‘“โ€ฒ(๐‘)=๐‘“(๐‘)โˆ’๐‘“(๐‘Ž) / ๐‘โˆ’๐‘Ž.
copied