Direct comparison test

$\textbf{Direct comparison test}$ Let $\sum_{k=1}^\infty a_k$ be a series. If there exists a convergent series $\sum_{k=1}^\infty b_k$ and $N\in\N$ such that $$\lvert a_k\rvert\leq b_k\quad\forall k\geq N,$$then $\sum_{k=1}^\infty a_k$ is absolutely convergent.
$\textbf{Direct comparison test}$ Let $\sum_{k=1}^\infty a_k$ be a series. If there exists a convergent series $\sum_{k=1}^\infty b_k$ and $N\in\N$ such that $$\lvert a_k\rvert\leq b_k\quad\forall k\geq N,$$then $\sum_{k=1}^\infty a_k$ is absolutely convergent.
copied
๐ƒ๐ข๐ซ๐ž๐œ๐ญย ๐œ๐จ๐ฆ๐ฉ๐š๐ซ๐ข๐ฌ๐จ๐งย ๐ญ๐ž๐ฌ๐ญ Let โˆ‘โ‚–โ‚Œโ‚โ€€แชฒ ๐‘Žโ‚– be a series. If there exists a convergent series โˆ‘โ‚–โ‚Œโ‚โ€€แชฒ ๐‘โ‚– and ๐‘โˆˆโ„• such that โˆฃ๐‘Žโ‚–โˆฃโ‰ค๐‘โ‚– โˆ€๐‘˜โ‰ฅ๐‘, then โˆ‘โ‚–โ‚Œโ‚โ€€แชฒ ๐‘Žโ‚– is absolutely convergent.
copied