sigma-Algebra

$\textbf{$\sigma$-Algebra}$ Let $X$ be a set. A collection $\mathscr{A}$ of subsets of $X$ is a $\sigma$-algebra on $X$ if 1) $X\in\mathscr{A}$ 2) $A\in\mathscr{A}\implies A^\complement\in \mathscr{A}$ 3) $\{A_i\}$ is an infinite sequence in $\mathscr{A}$ $\implies$ $\cup_{i=1}^\infty{A_i}$ belongs to $\mathscr{A}$ Note: It follows from these three conditions that a) $\varnothing\in \mathscr{A}$ b) $\{A_i\}$ is an infinite sequence in $\mathscr{A}$ $\implies$ $\cap_{i=1}^\infty{A_i}$ belongs to $\mathscr{A}$
$\textbf{$\sigma$-Algebra}$ Let $X$ be a set. A collection $\mathscr{A}$ of subsets of $X$ is a $\sigma$-algebra on $X$ if 1) $X\in\mathscr{A}$ 2) $A\in\mathscr{A}\implies A^\complement\in \mathscr{A}$ 3) $\{A_i\}$ is an infinite sequence in $\mathscr{A}$ $\implies$ $\cup_{i=1}^\infty{A_i}$ belongs to $\mathscr{A}$ Note: It follows from these three conditions that a) $\varnothing\in \mathscr{A}$ b) $\{A_i\}$ is an infinite sequence in $\mathscr{A}$ $\implies$ $\cap_{i=1}^\infty{A_i}$ belongs to $\mathscr{A}$
copied
๐œŽ-๐€๐ฅ๐ ๐ž๐›๐ซ๐š Let ๐‘‹ be a set. A collection ๐’œ of subsets of ๐‘‹ is a ๐œŽ-algebra on ๐‘‹ if 1) ๐‘‹โˆˆ๐’œ 2) ๐ดโˆˆ๐’œ โŸน ๐ดแถœโˆˆ๐’œ 3) {๐ดแตข} is an infinite sequence in ๐’œ โŸน โˆชแตขโ‚Œโ‚โ€€แชฒ ๐ดแตข belongs to ๐’œ Note: It follows from these three conditions that a) โˆ…โˆˆ๐’œ b) {๐ดแตข} is an infinite sequence in ๐’œ โŸน โˆฉแตขโ‚Œโ‚โ€€แชฒ ๐ดแตข belongs to ๐’œ
copied