Outer measure

$\textbf{Outer measure}$ Let $X$ be a set and let $\mathscr{P}(X)$ be the collection of all subsets of $X$. An outer measure on $X$ is a function $\mu^*:\mathscr{P}(X)\to[0,\infty]$ such that 1) Null empty set: $\mu^*(\varnothing)=0$ 2) Monotonicity: $A\subseteq B\subseteq X\implies\mu^*(A)\leq\mu^*(B)$ 3) Countable subadditivity: $\{A_i\}$ is an infinite sequence of subsets of $X$ $\implies$ $\mu^* (\cup_{i=1}^\infty A_i)\leq\sum_{i=1}^\infty \mu^*(A_i)$
$\textbf{Outer measure}$ Let $X$ be a set and let $\mathscr{P}(X)$ be the collection of all subsets of $X$. An outer measure on $X$ is a function $\mu^*:\mathscr{P}(X)\to[0,\infty]$ such that 1) Null empty set: $\mu^*(\varnothing)=0$ 2) Monotonicity: $A\subseteq B\subseteq X\implies\mu^*(A)\leq\mu^*(B)$ 3) Countable subadditivity: $\{A_i\}$ is an infinite sequence of subsets of $X$ $\implies$ $\mu^* (\cup_{i=1}^\infty A_i)\leq\sum_{i=1}^\infty \mu^*(A_i)$
copied
๐Ž๐ฎ๐ญ๐ž๐ซย ๐ฆ๐ž๐š๐ฌ๐ฎ๐ซ๐ž Let ๐‘‹ be a set and let ๐’ซ(๐‘‹) be the collection of all subsets of ๐‘‹. An outer measure on ๐‘‹ is a function ๐œ‡*:๐’ซ(๐‘‹)โ†’[0,โˆž] such that 1) Null empty set: ๐œ‡*(โˆ…)=0 2) Monotonicity: ๐ดโІ๐ตโІ๐‘‹ โŸน ๐œ‡*(๐ด)โ‰ค๐œ‡*(๐ต) 3) Countable subadditivity: {๐ดแตข} is an infinite sequence of subsets of ๐‘‹ โŸน ๐œ‡*(โˆชแตขโ‚Œโ‚โ€€แชฒ ๐ดแตข)โ‰คโˆ‘แตขโ‚Œโ‚โ€€แชฒ ๐œ‡*(๐ดแตข)
copied