Measurable with respect to an outer measure

$\textbf{Measurable with respect to an outer measure}$ Let $X$ be a set and $\mu^*$ an outer measure on $X$. A subset $B$ of $X$ is $\mu^*$-measurable (or measurable with respect to $\mu^*$) if for every subset $A$ of $X$ $$\mu^*(A)=\mu^*(A\cap B)+\mu^*(A\cap B^\complement) $$
$\textbf{Measurable with respect to an outer measure}$ Let $X$ be a set and $\mu^*$ an outer measure on $X$. A subset $B$ of $X$ is $\mu^*$-measurable (or measurable with respect to $\mu^*$) if for every subset $A$ of $X$ $$\mu^*(A)=\mu^*(A\cap B)+\mu^*(A\cap B^\complement) $$
copied
๐Œ๐ž๐š๐ฌ๐ฎ๐ซ๐š๐›๐ฅ๐žย ๐ฐ๐ข๐ญ๐กย ๐ซ๐ž๐ฌ๐ฉ๐ž๐œ๐ญย ๐ญ๐จย ๐š๐งย ๐จ๐ฎ๐ญ๐ž๐ซย ๐ฆ๐ž๐š๐ฌ๐ฎ๐ซ๐ž Let ๐‘‹ be a set and ๐œ‡* an outer measure on ๐‘‹. A subset ๐ต of ๐‘‹ is ๐œ‡*-measurable (or measurable with respect to ๐œ‡*) if for every subset ๐ด of ๐‘‹ ๐œ‡*(๐ด)=๐œ‡*(๐ดโˆฉ๐ต)+๐œ‡*(๐ดโˆฉ๐ตแถœ)
copied