Measurable function

$\textbf{Measurable function}$ Let $(X,\mathscr{A})$ and $(Y,\mathscr{B})$ be measurable spaces. A function $f:X\to Y$ is said to be measurable if $$B\in\mathscr{B}\implies f^{-1}(B)\in \mathscr{A}$$
$\textbf{Measurable function}$ Let $(X,\mathscr{A})$ and $(Y,\mathscr{B})$ be measurable spaces. A function $f:X\to Y$ is said to be measurable if $$B\in\mathscr{B}\implies f^{-1}(B)\in \mathscr{A}$$
copied
๐Œ๐ž๐š๐ฌ๐ฎ๐ซ๐š๐›๐ฅ๐žย ๐Ÿ๐ฎ๐ง๐œ๐ญ๐ข๐จ๐ง Let (๐‘‹,๐’œ) and (๐‘Œ,โ„ฌ) be measurable spaces. A function ๐‘“:๐‘‹โ†’๐‘Œ is said to be measurable if ๐ตโˆˆโ„ฌ โŸน ๐‘“โปยน(๐ต)โˆˆ๐’œ
copied