$\textbf{Measurable function}$
Let $(X,\mathscr{A})$ and $(Y,\mathscr{B})$ be measurable spaces. A function $f:X\to Y$ is said to be measurable if $$B\in\mathscr{B}\implies f^{-1}(B)\in \mathscr{A}$$
$\textbf{Measurable function}$
Let $(X,\mathscr{A})$ and $(Y,\mathscr{B})$ be measurable spaces. A function $f:X\to Y$ is said to be measurable if $$B\in\mathscr{B}\implies f^{-1}(B)\in \mathscr{A}$$
copied
๐๐๐๐ฌ๐ฎ๐ซ๐๐๐ฅ๐ย ๐๐ฎ๐ง๐๐ญ๐ข๐จ๐ง
Let (๐,๐) and (๐,โฌ) be measurable spaces. A function ๐:๐โ๐ is said to be measurable if
๐ตโโฌ โน ๐โปยน(๐ต)โ๐