Construction of a measure from an outer measure

$\textbf{Construction of a measure from an outer measure}$ Let $X$ be a set, let $\mu^*$ be an outer measure on $X$, and let $\mathscr{M}_{\mu^*}$ be the collection of all $\mu^*$-measurable subsets of $X$. Then $\mathscr{M}_{\mu^*}$ is a $\sigma$-algebra, and the restriction of $\mu^*$ to $\mathscr{M}_{\mu^*}$ is a measure on $\mathscr{M}_{\mu^*}$.
$\textbf{Construction of a measure from an outer measure}$ Let $X$ be a set, let $\mu^*$ be an outer measure on $X$, and let $\mathscr{M}_{\mu^*}$ be the collection of all $\mu^*$-measurable subsets of $X$. Then $\mathscr{M}_{\mu^*}$ is a $\sigma$-algebra, and the restriction of $\mu^*$ to $\mathscr{M}_{\mu^*}$ is a measure on $\mathscr{M}_{\mu^*}$.
copied
๐‚๐จ๐ง๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ข๐จ๐งย ๐จ๐Ÿย ๐šย ๐ฆ๐ž๐š๐ฌ๐ฎ๐ซ๐žย ๐Ÿ๐ซ๐จ๐ฆย ๐š๐งย ๐จ๐ฎ๐ญ๐ž๐ซย ๐ฆ๐ž๐š๐ฌ๐ฎ๐ซ๐ž Let ๐‘‹ be a set, let ๐œ‡* be an outer measure on ๐‘‹, and let โ„ณ๐œ‡* be the collection of all ๐œ‡*-measurable subsets of ๐‘‹. Then โ„ณ๐œ‡* is a ๐œŽ-algebra, and the restriction of ๐œ‡* to โ„ณ๐œ‡* is a measure on โ„ณ๐œ‡*.
copied