Complete measure

$\textbf{Complete measure}$ Let $(X,\mathscr{A},\mu)$ be a measure space. The measure $\mu$ is said to be complete if $$N\in \mathscr{A},S\subset N \text{ and }\mu(N)=0$$ imply that $S\in\mathscr{A}$.
$\textbf{Complete measure}$ Let $(X,\mathscr{A},\mu)$ be a measure space. The measure $\mu$ is said to be complete if $$N\in \mathscr{A},S\subset N \text{ and }\mu(N)=0$$ imply that $S\in\mathscr{A}$.
copied
๐‚๐จ๐ฆ๐ฉ๐ฅ๐ž๐ญ๐žย ๐ฆ๐ž๐š๐ฌ๐ฎ๐ซ๐ž Let (๐‘‹,๐’œ,๐œ‡) be a measure space. The measure ๐œ‡ is said to be complete if ๐‘โˆˆ๐’œ,๐‘†โŠ‚๐‘ย andย ๐œ‡(๐‘)=0 imply that ๐‘†โˆˆ๐’œ.
copied