Beppo Levi's theorem for Lebesgue integral

$\textbf{Beppo Levi's theorem for Lebesgue integral}$ Let $(X,\mathscr{A},\mu)$ be a measure space and let $\sum_{i=1}^\infty f_i$ be an infinite series of $[0,+\infty]$ valued $\mathscr{A}$-Borel-measurable functions on $X$. Then $$\int\sum_{i=1}^\infty f_id\mu=\sum_{i=1}^\infty\int f_id\mu$$
$\textbf{Beppo Levi's theorem for Lebesgue integral}$ Let $(X,\mathscr{A},\mu)$ be a measure space and let $\sum_{i=1}^\infty f_i$ be an infinite series of $[0,+\infty]$ valued $\mathscr{A}$-Borel-measurable functions on $X$. Then $$\int\sum_{i=1}^\infty f_id\mu=\sum_{i=1}^\infty\int f_id\mu$$
copied
๐๐ž๐ฉ๐ฉ๐จย ๐‹๐ž๐ฏ๐ขโ€™๐ฌย ๐ญ๐ก๐ž๐จ๐ซ๐ž๐ฆย ๐Ÿ๐จ๐ซย ๐‹๐ž๐›๐ž๐ฌ๐ ๐ฎ๐žย ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ Let (๐‘‹,๐’œ,๐œ‡) be a measure space and let โˆ‘แตขโ‚Œโ‚โ€€แชฒ ๐‘“แตข be an infinite series of [0,+โˆž] valued ๐’œ-Borel-measurable functions on ๐‘‹. Then โˆซโˆ‘แตขโ‚Œโ‚โ€€แชฒ ๐‘“แตข๐‘‘๐œ‡=โˆ‘แตขโ‚Œโ‚โ€€แชฒ โˆซ๐‘“แตข๐‘‘๐œ‡
copied