Algebra

$\textbf{Algebra}$ Let $X$ be a set. A collection $\mathscr{A}$ of subsets of $X$ is an algebra on $X$ if 1) $X\in\mathscr{A}$ 2) $A\in\mathscr{A}\implies A^\complement\in \mathscr{A}$ 3) $A,B\in \mathscr{A}\implies A\cup B\in \mathscr{A}$ Note: It follows from these three conditions that a) $\varnothing\in \mathscr{A}$ b) $A,B\in\mathscr{A}\implies A\cap B\in \mathscr{A}$
$\textbf{Algebra}$ Let $X$ be a set. A collection $\mathscr{A}$ of subsets of $X$ is an algebra on $X$ if 1) $X\in\mathscr{A}$ 2) $A\in\mathscr{A}\implies A^\complement\in \mathscr{A}$ 3) $A,B\in \mathscr{A}\implies A\cup B\in \mathscr{A}$ Note: It follows from these three conditions that a) $\varnothing\in \mathscr{A}$ b) $A,B\in\mathscr{A}\implies A\cap B\in \mathscr{A}$
copied
๐€๐ฅ๐ ๐ž๐›๐ซ๐š Let ๐‘‹ be a set. A collection ๐’œ of subsets of ๐‘‹ is an algebra on ๐‘‹ if 1) ๐‘‹โˆˆ๐’œ 2) ๐ดโˆˆ๐’œ โŸน ๐ดแถœโˆˆ๐’œ 3) ๐ด,๐ตโˆˆ๐’œ โŸน ๐ดโˆช๐ตโˆˆ๐’œ Note: It follows from these three conditions that a) โˆ…โˆˆ๐’œ b) ๐ด,๐ตโˆˆ๐’œ โŸน ๐ดโˆฉ๐ตโˆˆ๐’œ
copied