Subgroup

$\textbf{Subgroup}$ Let $(G,\cdot )$ be a group and $H\subset G$ a nonempty subset. $H$ is called a subgroup of $G$ if for all $a,b \in H$ the result $a\cdot b\in H$ and $a^{-1}\in H$. Note: A subgroup is a group itself.
$\textbf{Subgroup}$ Let $(G,\cdot )$ be a group and $H\subset G$ a nonempty subset. $H$ is called a subgroup of $G$ if for all $a,b \in H$ the result $a\cdot b\in H$ and $a^{-1}\in H$. Note: A subgroup is a group itself.
copied
๐’๐ฎ๐›๐ ๐ซ๐จ๐ฎ๐ฉ Let (๐บ,โ‹…) be a group and ๐ปโŠ‚๐บ a nonempty subset. ๐ป is called a subgroup of ๐บ if for all ๐‘Ž,๐‘โˆˆ๐ป the result ๐‘Žโ‹…๐‘โˆˆ๐ป and ๐‘Žโปยนโˆˆ๐ป. Note: A subgroup is a group itself.
copied