Group homomorphism

$\textbf{Group homomorphism}$ Let $(G,\cdot)$ and $(H,\ast)$ be groups. A function $\varphi:G\to H$ is called a group homomorphism if $$\varphi(a\cdot b)=\varphi(a)\ast \varphi (b)\quad\text{for all }a,b\in G$$
$\textbf{Group homomorphism}$ Let $(G,\cdot)$ and $(H,\ast)$ be groups. A function $\varphi:G\to H$ is called a group homomorphism if $$\varphi(a\cdot b)=\varphi(a)\ast \varphi (b)\quad\text{for all }a,b\in G$$
copied
๐†๐ซ๐จ๐ฎ๐ฉย ๐ก๐จ๐ฆ๐จ๐ฆ๐จ๐ซ๐ฉ๐ก๐ข๐ฌ๐ฆ Let (๐บ,โ‹…) and (๐ป,โˆ—) be groups. A function ๐œ‘:๐บโ†’๐ป is called a group homomorphism if ๐œ‘(๐‘Žโ‹…๐‘)=๐œ‘(๐‘Ž)โˆ—๐œ‘(๐‘) forย allย ๐‘Ž,๐‘โˆˆ๐บ
copied