$\textbf{Group homomorphism}$
Let $(G,\cdot)$ and $(H,\ast)$ be groups. A function $\varphi:G\to H$ is called a group homomorphism if $$\varphi(a\cdot b)=\varphi(a)\ast \varphi (b)\quad\text{for all }a,b\in G$$
$\textbf{Group homomorphism}$
Let $(G,\cdot)$ and $(H,\ast)$ be groups. A function $\varphi:G\to H$ is called a group homomorphism if $$\varphi(a\cdot b)=\varphi(a)\ast \varphi (b)\quad\text{for all }a,b\in G$$
copied
๐๐ซ๐จ๐ฎ๐ฉย ๐ก๐จ๐ฆ๐จ๐ฆ๐จ๐ซ๐ฉ๐ก๐ข๐ฌ๐ฆ
Let (๐บ,โ ) and (๐ป,โ) be groups. A function ๐:๐บโ๐ป is called a group homomorphism if
๐(๐โ ๐)=๐(๐)โ๐(๐) forย allย ๐,๐โ๐บ