Separation of a normed space by its dual space

$\textbf{Separation of a normed space by its dual space}$ Let $X$ be a normed space and $x_1, x_2\in X$, $x_1\neq x_2$. Then there exists $x^*\in X^*$ such that $x^*(x_1)\neq x^*(x_2)$.
$\textbf{Separation of a normed space by its dual space}$ Let $X$ be a normed space and $x_1, x_2\in X$, $x_1\neq x_2$. Then there exists $x^*\in X^*$ such that $x^*(x_1)\neq x^*(x_2)$.
copied
๐’๐ž๐ฉ๐š๐ซ๐š๐ญ๐ข๐จ๐งย ๐จ๐Ÿย ๐šย ๐ง๐จ๐ซ๐ฆ๐ž๐ย ๐ฌ๐ฉ๐š๐œ๐žย ๐›๐ฒย ๐ข๐ญ๐ฌย ๐๐ฎ๐š๐ฅย ๐ฌ๐ฉ๐š๐œ๐ž Let ๐‘‹ be a normed space and ๐‘ฅโ‚,๐‘ฅโ‚‚โˆˆ๐‘‹, ๐‘ฅโ‚โ‰ ๐‘ฅโ‚‚. Then there exists ๐‘ฅ*โˆˆ๐‘‹* such that ๐‘ฅ*(๐‘ฅโ‚)โ‰ ๐‘ฅ*(๐‘ฅโ‚‚).
copied